A nonconforming finite element method for the Biot's consolidation model in poroelasticity

نویسندگان

  • Xiaozhe Hu
  • Carmen Rodrigo
  • Francisco José Gaspar
  • Ludmil Zikatanov
چکیده

A stable finite element scheme that avoids pressure oscillations for a three-field Biot’s model in poroelasticity is considered. The involved variables are the displacements, fluid flux (Darcy velocity), and the pore pressure, and they are discretized by using the lowest possible approximation order: Crouzeix-Raviart finite elements for the displacements, lowest order Raviart-Thomas-Nédélec elements for the Darcy velocity, and piecewise constant approximation for the pressure. Mass-lumping technique is introduced for the Raviart-ThomasNédélec elements in order to eliminate the Darcy velocity and, therefore, reduce the computational cost. We show convergence of the discrete scheme which is implicit in time and use these types of elements in space with and without mass-lumping. Finally, numerical experiments illustrate the convergence of the method and show its effectiveness to avoid spurious pressure oscillations when mass lumping for the Raviart-ThomasNédélec elements is used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

Parameter-Robust Discretization and Preconditioning of Biot's Consolidation Model

Biot’s consolidation model in poroelasticity has a number of applications in science, medicine, and engineering. The model depends on various parameters, and in practical applications these parameters range over several orders of magnitude. A current challenge is to design discretization techniques and solution algorithms that are well behaved with respect to these variations. The purpose of th...

متن کامل

Robust finite element methods for Biot’s consolidation model

We propose new locking-free finite element methods for Biot’s consolidation model by coupling nonconforming and mixed finite elements. We show a priori error estimates of semidiscrete and fully discrete solutions. The main advantage of our method is that a uniform-in-time pressure error estimate is provided with an analytic proof. In our error analysis, we do not use Grönwall’s inequality, so t...

متن کامل

Analysis of a discontinuous Galerkin method for the Biot's consolidation problem

In this paper, a fully discrete stabilized discontinuous Galerkin method is proposed to solve the Biot's consolidation problem. The existence and uniqueness of the finite element solution are obtained. The stability of the fully discrete solution is discussed. The corresponding error estimates for the approximation of displacement and pressure in a mesh dependent norm are obtained. The error es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 310  شماره 

صفحات  -

تاریخ انتشار 2017